Treating and Pruning: new approaches to forecasting model selection and combination using prediction intervals

Abstract

We propose a new way of selecting among model forms in automated exponential smoothing routines, consequently enhancing their predictive power. The procedure, here addressed as treating, operates by selectively subsetting the ensemble of competing models based on information from their prediction intervals. By the same token, we set forth a pruning strategy to improve the accuracy of both point forecasts and prediction intervals in forecast combination methods. The proposed approaches are respectively applied to automated exponential smoothing routines and Bagging algorithms, to demonstrate their potential. An empirical experiment is conducted on a wide range of series from the M- Competitions. The results attest that the proposed approaches are simple, without requiring much additional computational cost, but capable of substantially improving forecasting accuracy for both point forecasts and prediction intervals, outperforming important benchmarks and recently developed forecast combination methods.

Publication
International Journal of Forecasting, 1(1)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Click the Slides button above to demo Academic’s Markdown slides feature.

Supplementary notes can be added here, including code and math.

Erick Meira
Erick Meira
Lecturer of Time Series Analysis and Forecasting

My research interests include Time Series, Forecasting, Data Analytics, Statistical Learning, Financial Econometrics and Sustainable Finance.